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Abstract. We present a neutron scattering study of the temperature and composition dependence of the
MnO-type superstructure reflection intensities in the diamagnetically diluted antiferromagnetic compounds
EuxSr1−xTe. In these materials antiferromagnetic biquadratic and ferromagnetic three-spin interactions
have been identified recently. These fourth-order non-Heisenberg interactions are able to create their own
order parameter which is believed to govern the order of the transverse moment components and which,
hence, is directed perpendicular to the common Heisenberg order parameter. The observed MnO-type
diffraction intensities originate in the sublattice magnetizations, Msub(T ), of both order parameters. Due
to the different composition dependencies for biquadratic interaction processes (∼ x) and three-spin inter-
action processes (∼ x2), the ferromagnetic three-spin interactions dominate for x > xc = 0.85, while for
x < 0.85 the antiferromagnetic biquadratic interactions dominate. Associated with this sign change in the
fourth-order interaction sum the transverse order parameter changes from the antiferromagnetic MnO type
for x < 0.85 to ferromagnetic for x > 0.85. This is noticed as a sudden decrease of the low-temperature
MnO scattering intensities at xc = 0.85. Although susceptibility measurements reveal clearly a ferro-
magnetic component for x > 0.85 no ferromagnetic Bragg intensities were observed in standard neutron
scattering spectra using EuTe powder samples. We explain this by the competition of antiferromagnetic
biquadratic and ferromagnetic three-spin interactions whereby a disturbed ferromagnetic superstructure
may be generated which gives rise also to weak MnO-type diffraction lines. It is found that the resulting
Msub(T ) obeys a T 2 law until a temperature as large as 0.75TN irrespective of the nature of the transverse
order parameter. The T 2 law must, hence, be common to both types of order parameter showing that
the fourth-order interactions re-define the spin dynamics of both completely. From the linear composition
dependence of the normalized T 2 coefficient the existence of three-spin interactions is again confirmed.

PACS. 75.30.Et Exchange and superexchange interactions – 75.30.Kz Magnetic phase boundaries
(including magnetic transitions, metamagnetism, etc.) – 75.40.Cx Static properties (order parameter,
static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

In two recent publications [1,2] it was shown how second-
order (bilinear) and fourth-order interactions can be dis-
tinguished with measurements of the linear susceptibility
χ1 and the cubic susceptibility χ3. Both susceptibilities
are defined by

Bi =
1

χ1
·m+

1

χ3
·m3 + . . . (1)

Here Bi is the external magnetic field converted to its
value inside the sample and m is the reduced magneti-
zation. It is easy to show that in the high temperature
limit fourth-order exchange interactions (which comprise a

product of four-spin operators such as biquadratic, three-
spin and four-spin interactions) give rise to a Curie-Weiss
law for χ3. According to the nomenclature used in equa-
tion (1) the Curie-Weiss laws of the linear susceptibility
χ1 and the cubic susceptibility χ3 read

χ1 =
C1

T −Θ1
with C1 =

g(S + 1)µB
3kB

(2)

χ3 =
C3

T −Θ3
with C3 =

10g(S + 1)3µB

9[(S + 1)2 + S2]kB
· (3)

It was furthermore shown in reference [2] that Θ1 is given
by a weighted sum of second-order (Heisenberg) exchange
interactions and fourth-order exchange interactions while
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Θ3 is given exclusively by fourth-order exchange interac-
tions. This opens a way to evaluate a quantitative mea-
sure for those interactions by an analysis of the curvature
of the paramagnetic isotherms according to equation (1)
and looking for the Curie-Weiss law of χ3. Note that in
the absence of fourth-order interactions a Curie law is ob-
served for χ3 with Θ3 ≡ 0.

The two Curie-Weiss laws of equations (2, 3) mean that
molecular field approximation predicts two order-disorder
transitions associated either with a divergence of the linear
susceptibility χ1 at T = Θ1 or with a divergence of the
cubic susceptibility χ3 at T = Θ3. Moreover, a divergence
of χ1 at a temperature different from the divergence of
χ3 implies molecular field critical exponents which are, in
fact, observed in GdMg, a material with sizable fourth-
order interactions [3]. It should be remarked that in the
Heisenberg model both susceptibilities diverge at one sole
critical temperature.

Since a collinear spin system can order only once it
has been argued in reference [3] that the second ordering
transition driven by the fourth-order interactions affects
the transverse moment components. In fact, these moment
components are the only degrees of freedom left for an ad-
ditional ordering process if the longitudinal moment com-
ponents are already ordered. Though the transverse spin
components perform highly correlated motions there is
no finite expectation value or spontaneous magnetic order
of the transverse magnetization in the absence of fourth-
order exchange interactions i.e. in the Heisenberg model.
Fourth-order interactions are therefore assumed to break
the rotational symmetry of the uniaxially ordered Heisen-
berg spin system.

On the other hand, the molecular field result given
by equation (3) is too simple to provide a clear idea on
the nature of the second ordering transition at T = Θ3.
We are therefore free to interpret this molecular field hint
and have to test the resulting implications experimentally.
Evidently also equation (1) gives no explicit indication for
a perpendicular arrangement of the two order parameters.
This is not to be expected since equation (1) is a scalar
relation referring to the high-temperature limit where Bi
and m are parallel.

The aim of this communication is to show that the neu-
tron scattering data described here are consistent with the
earlier propounded hypothesis [3] of two order parameters
generated by second-order and fourth-order exchange in-
teractions, respectively. In particular there are two con-
clusions to be drawn from our proposed interpretation
of the Curie-Weiss law of χ3: first, any marginal value
of the fourth-order interactions i.e. |Θ3| > 0 should be
able to generate a novel ordered phase to be attributed
to the transverse moment components. In general, this
phase should have a finite transition temperature different
from the conventional (Heisenberg) ordering temperature
at T = Θ1. Second, the ordering type of the transverse
moment components should be ferromagnetic for Θ3 > 0
and antiferromagnetic for Θ3 < 0. Both features have been
observed in the diamagnetically diluted antiferromagnetic

compounds EuxSr1−xTe [4,5] and will be substantiated
here with the microscopic method of neutron scattering.

It should be kept in mind that the class of fourth-order
interactions comprises a number of different and compet-
ing individual interaction processes. The ordering struc-
tures generated by these interactions will therefore not
be of the ideal collinear type. If we call an ordered state
ferromagnetic because of Θ3 > 0 or antiferromagnetic if
Θ3 < 0 this does not mean that simple collinear structures
are given. Disturbed spin structures apply in particular
for the conventional order parameter which is the result
of all (conflicting) second-order and fourth-order inter-
actions. Molecular field calculations have provided some
criteria for the rise of non-collinear ordering structures
[6–9]. The here evaluated ordered moment per Eu2+ of
much less than 7µB shows, in fact, that the MnO-type
order is strongly perturbed. An analysis using idealized
structure models is therefore inadequate. A very dramatic
observation in this respect was made in GdAg1−xZnx [10].
In this ternary alloy system ferrimagnetically ordered
phases owing to fourth-order interactions were identified
with magnetization, calorimetric and dilatometric mea-
surements without the observation of corresponding neu-
tron scattering intensities.

A discrimination between biquadratic, three-spin and
four-spin interactions can be achieved by a polynomial de-
composition of the experimental Θ3(x) function in mixed
crystals of the magnetic material of interest and an iso-
morphic diamagnetic material such as EuxSr1−xTe or
EuxSr1−xS [2]. Provided a perfect statistical distribution
of magnetic and diamagnetic ions [11] and constant inter-
action parameters the coefficients of the linear, quadratic
and cubic term in Θ3(x) are proportional to the bi-
quadratic, three-spin and four-spin interactions (the valid-
ity limits of this power series expansion for smaller x val-
ues will be outlined in the Appendix). It turned out, that
in EuxSr1−xTe biquadratic interactions are antiferromag-
netic and three-spin interactions are ferromagnetic [1,2].
Four-spin interactions seem to be of minor importance and
could be neglected in the data analysis. Since the probabil-
ity for biquadratic interactions is proportional to x while
the probability for three-spin interactions is proportional
to x2 (see Appendix), the relative weight of both inter-
actions changes with composition in EuxSr1−xTe. This
gives rise to a particular composition of xc = 0.85 at
which both interaction types compensate in the high-
temperature limit. Although a material withΘ3 = 0 would
meet the requirements of the Heisenberg model, the indi-
vidual microscopic interaction processes of the biquadratic
and three-spin type will still have a finite strength even
at xc = 0.85. The order parameters, Msub(T ), sense these
interactions and therefore they will show no ideal Heisen-
berg properties even at xc = 0.85. Only a quantity which
is defined by the high temperature average of all fourth-
order interaction processes can be expected to conform to
the Heisenberg model predictions at xc. This is the case

for the critical field B
‖
c (T → 0) which gives the phase

boundary to the paramagnetic phase. In the limit T → 0
the moments are nearly ferromagnetically aligned along
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B
‖
c (T ) and sample the high-temperature average value of

the fourth-order interactions. In fact, a crossover from the
predominant T 2 law to Bloch’s T 3/2 law could be observed

for B
‖
c (T → 0) on approaching xc [5].

The order parameters react in a quite different way
on the sign change of the fourth-order interaction sum at
xc i.e. the sign change of Θ3(x) at xc. The longitudinal
(Heisenberg) order parameter, O2, being defined mainly
by second-order interactions but to a smaller extent also
by fourth-order interactions, remains antiferromagnetic
for all compositions since Θ1(x) is always negative. The

Néel temperature of this order parameter, T
‖
N (x), as well

as the critical field value B
‖
c (T = 0) exhibit only a very

faint change in slope at xc [5]. This shows that longitudi-
nal and transverse ordering phenomena do virtually not
interfere.

The transverse order parameter, O4, on the other
hand, is defined exclusively by Θ3(x) and changes from an-
tiferromagnetic for x < 0.85 to ferromagnetic for x > 0.85.
For Θ3 < 0 i.e. x < 0.85 a second critical field curve,
B⊥c (T ), and a second Néel line, T⊥N (x), are clearly ob-
served in magnetization measurements [4,5]. As we will
show here a discontinuous decrease of the low-temperature
MnO-type scattering intensities is observed at xc due to
a changing order of the transverse spin components from
antiferromagnetic for x < xc to ferromagnetic for x > xc.
This shows that the observed MnO-type scattering in-
tensities are effected by both ordering structures. While

T
‖
N(x) and T⊥N (x) are different for x < 0.85, T⊥C (x) and

T
‖
N(x) seem to coincide for x > 0.85 according to the sus-

ceptibility measurements [5].

In 1930, Bloch calculated the low temperature
behaviour of the spontaneous magnetization for the
Heisenberg ferromagnet and found a T 3/2 law [12]. For
the ferromagnets CrBr3, EuS and GdMg it was shown ex-
perimentally that the fourth-order exchange interactions
change Bloch’s T 3/2 law into a T 2 law [3,5]. These in-
teractions seem to be decisive for the spin dynamics of
both order parameters not only for T → 0 but also in
the critical temperature range [5]. By analogy, the anti-
ferromagnetic Heisenberg order parameter i.e. the sublat-
tice magnetization Msub(T ) should likewise be modified
by the fourth-order exchange interactions. For antiferro-
magnets a T 2 law has been calculated for Msub(T ) as a
first-order approximation for T → 0 if only bilinear inter-
actions are considered and if the ground state is assumed
to be of the Néel type [13]. These assumptions are not
correct in the presence of fourth-order exchange interac-
tions and two mutually perpendicular order parameters.
Nevertheless, it is observed here that Msub(T ) exhibits a
T 2 law, but this law holds up to 0.75TN . Such a large va-
lidity range cannot be expected for the series expansion
used in calculating the leading T 2 term for conventional
antiferromagnets. Since the T 2 law observed for Msub(T )
expands over a temperature range which is as large as
that one for the spontaneous magnetization of ferromag-
nets, it is natural to consider this law also as a consequence
of the fourth-order interactions. The strong composition

dependence of the normalized T 2 coefficient, b(x), con-
firms this view, showing that the total magnetic couplings
are not simply proportional to x but contain one further
term proportional to x2. The x2 term is characteristic for
three-spin interactions which occur with a probability pro-
portional to x2 (see Appendix). Also in EuxSr1−xS the
observed x2 term in Θ1(x) could be shown to originate in
three-spin interactions while the coefficient of the linear
term is given by bilinear and biquadratic interactions [2].

2 Neutron diffraction experiments

Two different sets of neutron diffraction measurements
have been performed on single crystal material. A first
run of measurements has been done on instrument D10 of
the Institut Laue-Langevin in Grenoble using a neutron
wavelength of 0.127 nm. A final set of measurements in-
cluding a vertical magnetic field has been obtained on in-
strument E1 of the Hahn-Meitner-Institut in Berlin using
a wavelength of 0.24 nm. Due to the strong absorption of
Europium at this large wavelength the penetration depth
for the neutrons is only of the order of 0.1 mm. Therefore,
thin platelets have been cleaved from larger single crys-
tal ingots. These rectangular pieces can easily be oriented
according to their (100) cleavage planes. It is therefore
possible to cover larger areas with oriented single crys-
tal pieces and to compensate in this way for the small
penetration depth. The observed line broadening due to
misorientations of the composite sample is not substan-
tially larger than the inherent mosaic spread. The latter
is as large as two degrees for uncleaved material.

In order to calibrate the observed MnO-type super-
structure reflection intensities against the nuclear Bragg
intensities five EuxSr1−xTe powder samples have been
measured additionally on instrument D1B at ILL. Using
powder samples, intensity errors due to extinction effects
can be avoided. Such effects could clearly be noticed in
the single crystal experiments.

Figure 1 shows the normalized sublattice magnetiza-
tion as function of the squared reduced temperature for
one EuxSr1−xTe sample with x = 0.85. The sublattice
magnetization is obtained as the square root of the in-
tegrated Bragg intensity of the magnetic (1/2 1/2 1/2)
superstructure reflection. It should be recalled that the
as evaluated Msub(T ) contains contributions from both
types of order parameters. It can clearly be seen that the
variance of Msub(T ) follows a T 2 law over a temperature
range up to (T/TN)2 = 0.53 viz. T/TN = 0.73. Consid-
ering that TN = 8.1 K for x = 0.85, the T 2 law holds up
to T = 5.9 K. This can only be rationalized if the inter-
action responsible for the T 2 law is of the order of 5.9 K.
Anisotropy and dipole-dipole coupling are evidently much
too small to account for such a large energy.

Biquadratic and three-spin interactions have both the
right magnitude. In reference [1] it was shown that Θ3 =
+2.8 K for EuTe and −2.9 K for Eu0.65Sr0.35Te. Con-
sidering furthermore that Θ3 = 0 for x = 0.85 and that
only biquadratic and three-spin interactions are important
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Fig. 1. Normalized sublattice magnetization (square root of
integral intensity) of the antiferromagnetic (1/2 1/2 1/2) re-
flection for Eu0.85Sr0.15Te versus square of reduced Néel tem-
perature. The observed T 2 law holds up to 0.7TN .

[2,4], a fit of a quadratic function for Θ3(x) results into

Θ3(x) = −17.6 · x+ 20.6 · x2.

It is very surprising that both coefficients are even larger
than the Néel temperature of EuTe (TN = 9.8 K). This
shows that the competition between antiferromagnetic bi-
quadratic interactions and ferromagnetic three-spin inter-
actions is very strong but both interactions contribute

with a reduced rate only to T
‖
N . From reference [2] it re-

sults that three-spin interactions contribute the strongest

to T
‖
N with a rate of ≈ 1/3. Moreover, it becomes clear

that fourth-order exchange interactions are strong enough
to define the spin dynamics for all temperatures.

Figure 2 compares the normalized sublattice magne-
tizations as function of the squared reduced tempera-
tures for three samples with x = 1(EuTe), x = 0.85 and
x = 0.65. If the effective interactions would change pro-
portional to x i.e. if the exchange integrals are assumed to
be constants no differences should be visible in this scaled
representation. It can, however, clearly be seen that the
slope of the T 2 law gets steeper with dilution. This fea-
ture we attribute to the existence of three-spin interactions
which, ideally, contribute to the total interaction strength
proportional to x2 (see Appendix).

In Figure 3 we show the composition dependence of
the coefficient b(x) of the T 2 term defined by

Msub(T )

Msub(0)
= 1− b(x) ·

(
T

TN

)2

+ . . . (4)

As can be seen from Figure 3, b(x) changes in a nearly lin-
ear way with composition. This is characteristic for three-
spin interactions and confirms again that four-spin inter-
actions are less important. Otherwise b(x) should contain
one further term proportional to x2. A similar conclu-
sion has been drawn from an analysis of the measured
“biquadratic” molecular field constant Bqex(x) which in-
cludes the effects of all fourth-order interaction processes

Fig. 2. Comparison of the temperature dependence of the
normalized sublattice magnetizations for three EuxSr1−xTe
samples. The different slopes indicate an x2-dependence in the
effective interactions.

Fig. 3. Composition dependence of the normalized T 2 coeffi-
cient, b(x), defined by equation (4). The linear x-dependence
verifies the existence of three-spin interactions and shows that
four-spin interactions are negligible.

[2,4]. Fitting a linear function through the data points in
Figure 3 leads to b(x) = 0.87 − 0.45 · x. From this result
we have to conclude that without three-spin interactions
the coefficient b would be 0.87.

For EuTe (x = 1) three-spin interactions change b from
0.87 to 0.42. In other words, three-spin interactions reduce
b(x) and keep therefore the sublattice magnetization high
with increasing temperature. This stabilization is a much
surprising effect of a ferromagnetic three-spin interaction
in an antiferromagnet. On the other hand, the possible
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ordered moment configurations due to three-spin exchange
interactions are not sufficiently investigated theoretically
at present (see however Refs. [9,14]).

Another detail with Figure 3 is worth mentioning:
there is no definite anomaly noticeable at xc = 0.85 where
the order of the transverse moment components changes
from ferromagnetic for x > xc to antiferromagnetic for
x < xc. The insensitivity of b(x) against this phase change
shows again that the spin dynamics of both order param-
eters must be very similar.

For x < xc the situation is particularly clear. Accord-
ing to the magnetic measurements [4,5] we are dealing
with two antiferromagnets in the same material. Both

have clearly different Néel temperatures (T
‖
N and T⊥N ) and

considerably different critical field curves (B
‖
c and B⊥c ).

Since only half-integer scattering lines of the MnO type are
observed in neutron diffraction we have to conclude that
the associated order parameters, O2 and O4, are mostly of
the MnO-type and give rise to the same type of diffraction
lines. The due restriction is that the observed MnO-type
scattering intensities do not correspond to the fully or-
dered magnetic moment of Eu.

For x > xc, on the other hand, the half-integer scatter-
ing lines should sample the antiferromagnetic Heisenberg
order parameter O2 individually if O4 is ferromagnetic.
This idea must be questioned in view of missing ferromag-
netic Bragg lines and a rather small decrease of the abso-
lute MnO-type scattering intensities at xc = 0.85 where
the transverse order changes from antiferromagnetic to
ferromagnetic.

In order to avoid extinction effects which are clearly
noticed in single crystal studies the absolute intensity
measurements have been performed on powder samples.
Figure 4 shows the evaluated ordered moment per Eu
atom obtained by a calibration of the half-integer scat-
tering intensities against the nuclear Bragg intensities us-
ing the known scattering lengths of the elements involved.
Although the absolute values of the ordered moments are
subject to considerable uncertainties, the relative errors
in the data in Figure 4 are not larger than the size of the
symbols.

There are several important details with the results
of Figure 4 to be stressed. First, for all compositions too
small ordered moments result by the much too weak MnO-
type scattering intensities. This we consider as a conse-
quence of the antiferromagnetic biquadratic interactions
which require perpendicular moment orientations. Though
we term both antiferromagnetic, bilinear and biquadratic
interactions are in conflict with each other such that the
MnO-type of order will be disturbed. This is thought to
be the reason for the reduced scattering intensities.

Second, a linear intensity increase is observed with
composition x for the samples with x = 0.9, 0.95 and
x = 1.0. This we explain by three-spin interactions. The
positive slope then means that even though three-spin
interactions are ferromagnetic, they support the antifer-
romagnetic order of the conventional order parameter.
This seems to be a contradiction but we must consider
that also a ferromagnetic biquadratic interaction would

Fig. 4. Ordered antiferromagnetic saturation moment per Eu
atom sharing the MnO-type of order as function of composi-
tion in EuxSr1−xTe. The relative errors of the data are not
larger than the size of the symbols. At xc the total fourth-
order interaction changes from antiferromagnetic for x < xc to
ferromagnetic for x > xc.

support the conventional antiferromagnetic order of the
magnetic ground state because due to the quadrature par-
allel and antiparallel orientations are both energetically
preferred. It must be noted that the just given interpreta-
tion is in keeping with the result for b(x) given in Figure 3.
This quantity also showed that the ferromagnetic three-
spin interactions support the antiferromagnetic order in
that they reduce b(x) and stabilize, hence, the MnO-type
magnetic order for increasing temperatures.

An alternative explanation for the strong decrease of
the MnO-type scattering intensities with diamagnetic di-
lution would be given by random site effects. The observed
linear decrease of the ordered moment seems, however,
much too strong for a diamagnetically diluted Heisenberg
system. Computer simulations have shown that the or-
dered saturation moment stays at its full value for consid-
erable dilution concentrations [15].

The observed linear increase of the ordered moment
with increasing x for x > 0.85 as well as for x < 0.85
is such that for x → 0 virtually no ordered moment will
result by extrapolation. This means that the observed or-
dered moment is stabilized nearly exclusively by three-spin
interactions. In other words, in the absence of three-spin
interactions virtually no diffraction intensities would be
observed. Apparently the antiferromagnetic biquadratic
interations are strong enough to destroy the MnO-type
magnetic order required by the antiferromagnetic bilin-
ear interactions nearly completely. Only the ferromagnetic
three-spin interactions support this order and give rise to
at least weak MnO-type scattering intensities.

Third, the change in order of the transverse moment
components from antiferromagnetic for x < xc to ferro-
magnetic for x > xc is noticed by a sudden decrease of the
antiferromagnetically ordered moment. This is what we
expect but the observed effect corresponds only to 0.6 µB
of the total moment of 7 µB and is therefore very weak.
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Fig. 5. Field dependence of ferromagnetic (1 1 1) and
antiferromagnetic (1/2 1/2 1/2) scattering intensity for an
Eu0.75Sr0.25Te sample at T = 1.9 K revealing the phase tran-
sition at B⊥c (T ). In contrast to the magnetization which shows
a linear field dependence no field induced magnetic scattering
intensities are observed for the (1 1 1) reflection in the field
range 0 < B0 < B⊥c .

Of course, one should be careful in drawing quantitative
conclusions from data with unclear absolute values.

For all samples with x < 0.85 a second critical
field curve B⊥c (T ) is observed in magnetization measure-
ments [4,5]. This phase boundary can also be observed
with neutron scattering. Figure 5 shows the field depen-
dence of the integrated scattering intensities of one ferro-
magnetic (111) and one antiferromagnetic (1/2 1/2 1/2)
diffraction line at a temperature of 1.9 K for one sample
with x = 0.75. The magnetic field was vertical i.e. per-
pendicular to the scattering plane in these experiments.
A sudden decrease of the antiferromagnetic (1/2 1/2 1/2)
intensity near the phase transition at B⊥c can clearly be
noticed. This intensity decrease is due to a vanishing mag-
netic order of the transverse moment components. Assum-
ing that for fields Bo > B⊥c the antiferromagnetic order of
the transverse moment components has disappeared com-
pletely, the diffraction intensity of this order parameter
can be estimated to be 0.17 of that of the longitudinal
order parameter. The ratio of the ordered transverse and
longitudinal moments is therefore 0.41. In contrast to this,
the decrease of the MnO scattering intensity at xc which
must also be ascribed to the disappearance of the trans-
verse antiferromagnetic phase (see Fig. 4) is much less
than that one observed at B⊥c in Figure 5.

In the limit Bo → 0, the observed (111) scattering
intensity in Figure 5 is given by nuclear scattering pro-
cesses only for the sample with x = 0.75. No field in-
duced additional magnetic scattering intensity appears in
the field range up to the critical field B⊥c (T = 1.9 K) =
0.3 tesla. This is much surprising since it is at variance
with the magnetization m(Bo) which exhibits a linear
increase with field in the range 0 < Bo < 0.3 T (see
Fig. (3) of Ref. [5]). The slope of the m(Bo) curve is
only slightly smaller for Bo < B⊥c than for Bo > B⊥c . It
could reasonably be expected that the ferromagnetic (111)

intensity should increase in the same way the antiferro-
magnetic (1/2 1/2 1/2) intensity decreases in the field
range 0 < Bo < B⊥c .

We interpret the suppression of the ferromagnetic scat-
tering intensities as due to a very inhomogeneous spin
order of the field induced ferromagnetic component such
that diffraction conditions are not fulfilled. This inhomo-
geneity may be caused by the competing individual in-
teraction processes within the class of fourth-order inter-
actions, but also by some geometrical incompatibility of
a transverse ferromagnetic component coexisting with a
much stronger longitudinal antiferromagnetic component
on the fcc lattice. By the same reason no ferromagnetic
Bragg intensities seem be observed for the samples with
x > 0.85 for which the resulting fourth-order interactions
are ferromagnetic. For EuTe the rise of the ferromagnetic
Bragg intensities with field is also delayed compared to
the rise of the magnetization.

3 Conclusions

A T 2 law has been observed for the low-temperature
behaviour of the sublattice magnetizations Msub(T ) of
all diamagnetically diluted antiferromagnets EuxSr1−xTe.
This conforms to early zero field NMR measurements
on EuTe which also revealed a T 2 law for the hyperfine
field [18]. Since the hyperfine field samples the local polar-
ization it can be assumed to be proportional to Msub(T ).

In the present work Msub(T ) was obtained from the
scattering intensities of the MnO-type magnetic reflec-
tions with half-integer indices. Since ordering structures
due to second-order (bilinear) and fourth-order interac-
tions contribute to these MnO-type magnetic reflections
a superposition of two order parameters is observed. As
a consequence, the observed T 2 law must apply to both
types of order parameters. The unusually large validity
range of the T 2 law, we believe, shows that this law has a
different origin than the T 2 law calculated in first approx-
imation for the Heisenberg antiferromagnet with a Néel
ground state [13]. We consider the T 2 law of Msub(T ) as a
consequence of the fourth-order interactions. These inter-
actions are known to dominate the spin dynamics of both
order parameters [3] leading to the same temperature de-
pendence for both. Among the class of fourth-order in-
teractions individual interaction processes exist which are
strong enough to stabilize the T 2 law even for the Heisen-

berg order parameter (O2) up to 0.75 T
‖
N [1,2].

It is very surprising that for the spontaneous mag-
netization of ferromagnets (such as EuO, EuS, GdMg
and CrBr3) and the sublattice magnetization of antiferro-
magnets the same T 2 law is observed over a comparably
wide temperature range. The common exponent might be
fortuitous but considering that, due to the quadrature,
the biquadratic interaction energies are the same for fer-
romagnetic and antiferromagnetic moment orientations,
identical exponents appear not unreasonable. This would
further support the view that the T 2 law originates in
fourth-order interactions [5].
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This work was intended to use the microscopic method
of neutron scattering to confirm the hypothesis that a sec-
ond ordering structure is generated by the fourth-order
exchange interactions. For x < 0.85 the high-temperature
average of all fourth-order interactions is antiferromag-
netic (Θ3 < 0) and, consistently, a second antiferromag-
netic phase noticed by a second critical field curve B⊥c (T )
is observed in magnetization [4,5] and neutron scatter-
ing measurements. Due to the different and competing
individual interaction processes both ordering structures
are considerably perturbed and give rise to rather weak
half-integer Bragg reflections of the MnO-type. From the
observed decrease of the antiferromagnetic (1/2 1/2 1/2)
scattering intensity at B⊥c it could be estimated that the
transverse order parameter is 0.41 of the longitudinal or-
der parameter in the case of a sample with x = 0.75.

From the composition dependence of the evaluated
MnO-type saturation moment indications are obtained
that the antiferromagnetic biquadratic interactions de-
stroy the basic MnO order. These interactions have the
same composition dependence as the bilinear interactions
(∼ x) and reduce the ordered moment per Eu2+ by a
constant amount for all compositions. In contrast to this
the ferromagnetic three-spin interactions seem to support
the antiferromagnetic order of the conventional order pa-
rameter giving rise to an ordered moment per Eu2+ in-
creasing linearly with x. We could estimate that without
the existence of ferromagnetic three-spin interactions vir-
tually no MnO scattering intensities would be observed.
Since antiferromagnetic biquadratic interactions require
a perpendicular moment orientation they are in conflict
with the antiferromagnetic Heisenberg interactions and
perturbe the MnO-type order. On the other hand, fer-
romagnetic three-spin interactions seem to act similar like
ferromagnetic biquadratic interactions in that they sup-
port the antiferromagnetic order of the ground state. Of
course, a second energy minimum occurs at the ferromag-
netic orientation. The terms ferromagnetic and antiferro-
magnetic have therefore a completely different meaning
than usual if they refer to ordered structures induced by
the fourth-order exchange interactions.

By analogy, for x > 0.85 the transverse order parame-
ter should be ferromagnetic since Θ3 > 0. The rise of this
ferromagnetic component is noticed only indirectly by a
sudden decrease of the MnO-type scattering intensities at
xc = 0.85 (see Fig. 4). This decrease with composition is
surprisingly small compared to the loss of the scattering
intensity as function of field at B⊥c associated with the
disappearance of the antiferromagnetic transverse order
parameter for the samples with x < 0.85. A positive iden-
tification of the ferromagnetic order for x > 0.85 using
neutron scattering failed. Powder diffraction spectra on
EuTe showed virtually no ferromagnetic Bragg lines [4].

On the other hand, we cannot exclude that the pos-
tulated ferromagnetic transverse order has a very un-
common superstructure and contributes also to the ob-
served MnO-type scattering intensities. This explanation
appears highly speculative but it is not unlikely. In par-
ticular, three-spin interactions are able to stabilize spin

orientations between next-nearest neighbour spins over
one intermediate spin with a rather unimportant orien-
tation thus creating a ferromagnetic superstructure with
a period of twice the lattice constant. In this way we can
think also of a transverse ferromagnetic order, the scat-
tering intensities of which add to the half-integer MnO
diffraction lines of the conventional order parameter. The
relatively small drop of the ordered moment at xc = 0.85
(see Fig. 4) could then be explained by the additional
MnO-type scattering intensities originating in this ferro-
magnetic transverse superstructure for 0.85 < x < 1.0.

Additionally it must be considered that for x > 0.85
the ferromagnetic three-spin interactions dominate over
the antiferromagnetic biquadratic interactions. No sim-
ple or collinear spin order can be expected under such a
competition. This will reduce the observed scattering in-
tensities in general. The postulated “ferromagnetic” order
parameter might therefore exist even if there are no con-
ventional Bragg diffraction intensities observed in stan-
dard neutron scattering spectra. The missing scattering
intensities might be observable only as a diffuse compo-
nent which is difficult to observe for these strongly absorb-
ing samples.

Though the existence of an antiferromagnetically or-
dered phase due to fourth-order interactions could be con-
firmed with neutron scattering on account of a second
critical field and the observation of additional MnO-type
diffraction intensities, no information was obtained on the
orientation of this orderd component relative to the con-
ventional order parameter. Up to now it was shown only
for GdMg with neutron scattering [17] and magnetization
measurements [3] that both ordered components are per-
pendicular to each other. Further magnetic systems need
to be investigated in order to establish the mutually per-
pendicular orientation of second-order (O2) and fourth-
order (O4) order parameters as a general principle.

Appendix

It is generally accepted that the paramagnetic Curie-
Weiss temperature Θ1(x) is in good approximation a lin-
ear function of the concentration x of the magnetic mo-
ments provided that 1) magnetic and non-magnetic ions
are distributed at random, 2) that the interaction pa-
rameters are constants i.e. do not change with composi-
tion x and 3) that three-spin and four-spin interactions
are absent. Θ1(x) will deviate from the linear relation
Θ1(x) = x ∗Θ(1) only for concentrations x which are suf-
ficiently small such that the probability for any reference
spin to find an interaction partner within the reach of the
exchange interactions tends to zero. In the following we
will give an estimate for this lower bound of x.

As a matter of definition Θ1(x) gives the total interac-
tion a reference spin has with all its interaction partners
around. Since it is known that the exchange interactions
in the Eu chalcogenides are restricted to nearest and next-
nearest neighbours [19] only a coordination of z = 12 + 6
has to be considered. Θ1 is then given by the threefold
product consisting of the probability that the reference
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site will be occupied by a magnetic atom (∼ x) times the
average number of interaction partners within the interac-
tion radius, times the exchange constant to these partners
(for simplicity we will assume that the exchange constants
to all neighbour shells are equal). Using Poisson statistics
i.e. assuming a continuous lattice the probability of find-
ing one of the z coordination sites occupied by a magnetic
moment is given by

w1 = (1− e−z∗x). (A.1)

With z = 18 the probability w1 reaches w1 → 1 for x→ 1
with a sufficient accuracy. Since the incorporation of the
magnetic ions on the z coordination sites is considered as
completely independent events occurring with the same
probability the average number of interaction partners is
given by

Nz = z ∗ (1− e−z∗x) (A.2)

Θ1 is therefore proportional to x ∗Nz.
As can easily be verified, the expression in brackets

is > 0.99 for x > 0.25. For x > 0.38 the approxima-
tion Θ1 ∼ z ∗ x holds to within an error of smaller
than 10−3. Since we are interested in the composition
range with a long-range magnetic order i.e. in samples
with x ≥ 0.5 the approximation Θ1 ∼ z ∗ x is suffi-
ciently correct. On the other hand, for concentrations with
z ∗x� 1 i .e. x� 0.056 the expression in brackets can be
linearized and now Θ1 ∼ x2. In this limit the magnetic in-
teractions are restricted to isolated magnetic pairs which
occur with a probability ∼ x2.

It is evident that the probability that three spins are
close enough to interact with each other is given by the
probability for pair formation (∼ x2) times the probabil-
ity that both partners have one third interaction partner
which is given by the squared expression of equation (A.1).
Also in this case (w1)2 approaches unity for the aforemen-
tioned concentrations x. The evaluation of the correct co-
ordination numbers for three-spin interactions requires,
however, more elaborate geometrical considerations for
each lattice type (see for instance Ref. [20]).
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